Informação-Prova a Nível de Escola

Prova a Nível de Escola Prova 325 | 2024

11.º Ano de Escolaridade (Decreto-Lei n.º 55/2018, de 6 de julho)

Modalidade: Escrita

1^a e 2^a Fases

O presente documento divulga informação relativa à prova a Nível de Escola do ensino secundário da disciplina de Física e Química A, 11.º ano, a realizar em 2024, nomeadamente:

- Objeto de avaliação
- Caracterização da prova
- Material
- Duração

Objeto de avaliação

A prova tem por referência o Perfil dos Alunos à Saída da Escolaridade Obrigatória e as respetivas áreas de competências, bem como as Aprendizagens Essenciais de Física e Química A para os 10.º e 11.º anos, e permite avaliar a aprendizagem passível de avaliação numa prova escrita de duração limitada, nomeadamente:

- conhecimento e compreensão de conceitos, leis e teorias que descrevem, explicam e preveem fenómenos, e que fundamentam a sua aplicação em situações e contextos diversificados;
- seleção, análise, interpretação e avaliação crítica de informação relativa a situações concretas;
- produção de representações variadas da informação científica, apresentação de raciocínios demonstrativos e comunicação de ideias em situações e contextos diversificados.

Na prova, são avaliadas aprendizagens relativas aos domínios das Aprendizagens Essenciais.

A dimensão prático-experimental é objeto de avaliação e pode, também, ser mobilizada transversalmente na prova.

Caracterização da prova

A prova é escrita e inclui itens de seleção (por exemplo, escolha múltipla) e itens de construção (por exemplo, resposta restrita). Os itens podem ter como suporte um ou mais documentos, como textos, tabelas, gráficos, esquemas e figuras. A prova apresenta uma distribuição equilibrada entre os domínios da área da Física e da área da Química, bem como entre os domínios dos dois anos de escolaridade a que as Aprendizagens Essenciais se referem. As respostas aos itens podem requerer a mobilização articulada de aprendizagens relativas a mais do que um dos domínios das Aprendizagens Essenciais.

A prova é cotada para 200 pontos.

A prova inclui:

- uma tabela de constantes (Anexo 1);
- um formulário (Anexo 2);
- uma tabela periódica (Anexo 3).

Material

Material autorizado: Máquina de calcular científica ou gráfica e esferográfica de tinta azul ou preta. Não é permitido o uso de corretor.

Duração

A prova tem a duração de 120 minutos com 30 minutos de tolerância.

Tabela de constantes

Capacidade térmica mássica da água líquida	$c = 4.18 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$
Constante de Avogadro	$N_{\rm A} = 6.02 \times 10^{23} \rm mol^{-1}$
Constante de gravitação universal	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
Índice de refração do ar	n = 1,000
Módulo da aceleração gravítica de um corpo junto à superfície da Terra	$g = 9,80 \text{ m s}^{-2}$
Módulo da velocidade de propagação da luz no vácuo	$c = 3,00 \times 10^8 \text{ m s}^{-1}$
Produto iónico da água (a 25 °C)	$K_{\rm w} = 1.012 \times 10^{-14}$
Volume molar de um gás (PTN)	$V_{\rm m} = 22.4 \text{ dm}^3 \text{ mol}^{-1}$

Anexo 2

Formulário

· Quantidade, massa e volume

$$n = \frac{N}{N_{\Delta}}$$

$$M = \frac{m}{n}$$

$$V_{\rm m} = \frac{V}{n}$$

$$\rho = \frac{m}{V}$$

Soluções

$$c = \frac{n}{V}$$

$$x_{\rm A} = \frac{n_{\rm A}}{n_{\rm total}}$$

$$pH = -log \ [H_3O^+],$$

$$com \ [H_3O^+] \ expresso \ em \ mol \ dm^{-3}$$

Energia

$$E_{\rm c} = \frac{1}{2} m v^2$$

$$E_{pg} = mgh$$

$$E_{\rm m} = E_{\rm c} + E_{\rm p}$$

$$P = \frac{E}{\Delta t}$$

$$W = F d \cos \alpha$$

$$\sum W_i = \Delta E_c$$

$$W_{\overrightarrow{F_e}} = -\Delta E_{pg}$$

$$U = RI$$

$$P = RI^2$$

$$U = \varepsilon - rI$$

$$E=m\;c\;\Delta T$$

$$\Delta U = W + Q$$

$$E_r = \frac{P}{A}$$

Mecânica

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$
 $v = v_0 + a t$

$$v = v_0 + at$$

$$a_c = \frac{v^2}{r}$$

$$a_c = \frac{v^2}{r}$$
 $\omega = \frac{2\pi}{T}$

$$v = \omega r$$

$$\vec{F} = m\vec{a}$$

$$F_g = G \frac{m_1 m_2}{r^2}$$

· Ondas e eletromagnetismo

$$\lambda = \frac{v}{f}$$

$$\Phi_{\rm m} = BA\cos\alpha$$

$$|\varepsilon_i| = \frac{|\Delta \Phi_m|}{\Delta t}$$

$$n = \frac{c}{v}$$

$$n_1 \sin \alpha_1 = n_2 \sin \alpha_2$$

Tabela periódica

18	400 He	Ne Sign	18 Ar 30,95	8 5	83.80	3,	Ne 131.39	8 6	Kn	≅ 6	1 8			_
	17	6 4 6	7 D 35.8	35	79,90	53	136,90	88	W	II.		11	Lu (7497)	100
16		8 O 16.00	16 S 32.06	A.	76.85	\$3	Te 127,60	7.	2	9 <u>A</u>		8	Yb 173,08	102
	5	7 N 1	15 P 30,97	8.	74.92	15	Sb 121.76	68	208.98	HS Mc		69	Tm 168.93	108
	4	6 C 12.01	∓ S S ± S ± S ± S ± S ± S ± S ± S ± S ± S	32	363	90	Sn 118.71	2 1	2002	E		8	Er 167,36	100
	5	5 B 10.81	13 AN 26,98	5.4	3 68 22	49	II482	18	20438	2 %		63	Ho 16493	66
		AET - S	12	30	8.8 8.8	8	124 1124	00 ;	200.59	≅ 5		8	Dy 162.30	8
			F	n (63.8	41	Ag 107.87	62	19697	≡ 22		99	TP (38.93	-26
			9	28	8,00 8,00	99	Pd 106.42	7 1	195.08	ê å		64	3.23	96
			6	R (86.93	99	Rh Ing.9t	2.	192.22	Mt Nt		.8	Eu 151,96	56
			80	500	55,85	44	Ru 101,07	8 (19073	108		62	Sm 13036	94
			~	n	MIn 54.94	48	Te	2	186.21	1 B		19	P. B.	68
			9	R (550	9	Mo 95.95	2,4	18384	S 80		09	Nd 14.24	26
		úmeo atómico Elemento o atómico edativo	ID.	23	50.94	Ŧ	NB 92.91	P	180.95	50 E0		59	Pr 140,91	16
		Número atómico Elemento Masso atómica relativa	4	81 [4	47,87	(8)	Zr 91.22	72	13.49	10H		æ	Ce 140.12	06
			_ا	·	# % # %	36	Y 1688	57-71	Larlandon	8941@3 Aditions	10.000	25	1881	68
	8	# Be 9.01	12 Mg 2431	8 (5000	×	Sr. 87.62	96	137.33	Ra 88		_		177
-	- # 5	6.94 6.94	= N S	61.5	97,10	33	Rb 85.47	a (13291	87 Fr				